Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Open Forum Infect Dis ; 10(5): ofad168, 2023 May.
Article in English | MEDLINE | ID: covidwho-2322657

ABSTRACT

Background: We compared postinfection severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (nAb) responses among children and adults while the D614G-like strain and Alpha, Iota, and Delta variants circulated. Methods: During August 2020-October 2021, households with adults and children were enrolled and followed in Utah, New York City, and Maryland. Participants collected weekly respiratory swabs that were tested for SARS-CoV-2 and had sera collected during enrollment and follow-up. Sera were tested for SARS-CoV-2 nAb by pseudovirus assay. Postinfection titers were characterized with biexponential decay models. Results: Eighty participants had SARS-CoV-2 infection during the study (47 with D614G-like virus, 17 with B.1.1.7, and 8 each with B.1.617.2 and B.1.526 virus). Homologous nAb geometric mean titers (GMTs) trended higher in adults (GMT = 2320) versus children 0-4 (GMT = 425, P = .33) and 5-17 years (GMT = 396, P = .31) at 1-5 weeks postinfection but were similar from 6 weeks. Timing of peak titers was similar by age. Results were consistent when participants with self-reported infection before enrollment were included (n = 178). Conclusions: The SARS-CoV-2 nAb titers differed in children compared to adults early after infection but were similar by 6 weeks postinfection. If postvaccination nAb kinetics have similar trends, vaccine immunobridging studies may need to compare nAb responses in adults and children 6 weeks or more after vaccination.

2.
Open Forum Infect Dis ; 10(5): ofad204, 2023 May.
Article in English | MEDLINE | ID: covidwho-2313971

ABSTRACT

Background: Early coronavirus disease 2019 (COVID-19) vaccine trials excluded pregnant women, resulting in limited data about immunogenicity and maternal-fetal antibody transfer, particularly by gestational timing of vaccination. Methods: In this multicenter observational immunogenicity study, pregnant and nonpregnant women receiving COVID-19 vaccines were prospectively enrolled. Participants had sera collected before vaccination, at 14-28 days after each vaccine dose, at delivery (umbilical cord and peripheral), and from their infants at 3 and 6 months. Geometric mean titers (GMTs) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ID50 neutralizing antibody (nAb) against D614G-like viruses were compared by participant characteristics. Results: Overall, 23 nonpregnant and 85 pregnant participants (trimester of first vaccine dose: 10 first, 47 second, 28 third) were enrolled. Ninety-three percent (76/82 with blood samples) of pregnant participants had detectable SARS-CoV-2 nAb after 2 vaccine doses, but GMTs (95% confidence intervals) were lower in pregnant participants than nonpregnant participants (1722 [1136-2612] vs 4419 [2012-9703]; P = .04). By 3 and 6 months, 28% and 74% of infants, respectively, of vaccinated participants had no detectable nAb to D614G-like viruses. Among the 71 pregnant participants without detectable nAb before vaccination, cord blood GMTs at delivery were 5-fold higher among participants vaccinated during the third versus first trimester, and cord blood nAb titers appeared inversely correlated with weeks since first vaccine dose (R2 = 0.06, P = .06). Conclusions: Though most pregnant women develop nAb after 2 doses of mRNA COVID-19 vaccines, this analysis suggests that infant protection from maternal vaccination varies by gestational timing of vaccination and wanes. Additional prevention strategies such as caregiver vaccination may warrant consideration to optimize infant protection.

3.
JAMA ; 329(6): 482-489, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2310661

ABSTRACT

Importance: Influenza virus infections declined globally during the COVID-19 pandemic. Loss of natural immunity from lower rates of influenza infection and documented antigenic changes in circulating viruses may have resulted in increased susceptibility to influenza virus infection during the 2021-2022 influenza season. Objective: To compare the risk of influenza virus infection among household contacts of patients with influenza during the 2021-2022 influenza season with risk of influenza virus infection among household contacts during influenza seasons before the COVID-19 pandemic in the US. Design, Setting, and Participants: This prospective study of influenza transmission enrolled households in 2 states before the COVID-19 pandemic (2017-2020) and in 4 US states during the 2021-2022 influenza season. Primary cases were individuals with the earliest laboratory-confirmed influenza A(H3N2) virus infection in a household. Household contacts were people living with the primary cases who self-collected nasal swabs daily for influenza molecular testing and completed symptom diaries daily for 5 to 10 days after enrollment. Exposures: Household contacts living with a primary case. Main Outcomes and Measures: Relative risk of laboratory-confirmed influenza A(H3N2) virus infection in household contacts during the 2021-2022 season compared with prepandemic seasons. Risk estimates were adjusted for age, vaccination status, frequency of interaction with the primary case, and household density. Subgroup analyses by age, vaccination status, and frequency of interaction with the primary case were also conducted. Results: During the prepandemic seasons, 152 primary cases (median age, 13 years; 3.9% Black; 52.0% female) and 353 household contacts (median age, 33 years; 2.8% Black; 54.1% female) were included and during the 2021-2022 influenza season, 84 primary cases (median age, 10 years; 13.1% Black; 52.4% female) and 186 household contacts (median age, 28.5 years; 14.0% Black; 63.4% female) were included in the analysis. During the prepandemic influenza seasons, 20.1% (71/353) of household contacts were infected with influenza A(H3N2) viruses compared with 50.0% (93/186) of household contacts in 2021-2022. The adjusted relative risk of A(H3N2) virus infection in 2021-2022 was 2.31 (95% CI, 1.86-2.86) compared with prepandemic seasons. Conclusions and Relevance: Among cohorts in 5 US states, there was a significantly increased risk of household transmission of influenza A(H3N2) in 2021-2022 compared with prepandemic seasons. Additional research is needed to understand reasons for this association.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Influenza Vaccines , Influenza, Human , Adolescent , Adult , Child , Female , Humans , Male , COVID-19/epidemiology , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza Vaccines/therapeutic use , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza, Human/transmission , Pandemics/prevention & control , Pandemics/statistics & numerical data , Prospective Studies , Seasons , Family Characteristics , United States/epidemiology , Contact Tracing/statistics & numerical data , Self-Testing
4.
Pediatrics ; 151(5)2023 05 01.
Article in English | MEDLINE | ID: covidwho-2297976

ABSTRACT

OBJECTIVES: We assessed BNT162b2 vaccine effectiveness (VE) against mild to moderate and severe coronavirus disease 2019 (COVID-19) in children and adolescents through the Omicron BA.4/BA.5 period. METHODS: Using VISION Network records from April 2021 to September 2022, we conducted a test-negative, case-control study assessing VE against COVID-19-associated emergency department/urgent care (ED/UC) encounters and hospitalizations using logistic regression, conditioned on month and site, adjusted for covariates. RESULTS: We compared 9800 ED/UC cases with 70 232 controls, and 305 hospitalized cases with 2612 controls. During Delta, 2-dose VE against ED/UC encounters at 12 to 15 years was initially 93% (95% confidence interval 89 to 95), waning to 77% (69% to 84%) after ≥150 days. At ages 16 to 17, VE was initially 93% (86% to 97%), waning to 72% (63% to 79%) after ≥150 days. During Omicron, VE at ages 12 to 15 was initially 64% (44% to 77%), waning to 13% (3% to 23%) after ≥150 days; at ages 16 to 17 VE was 31% (10% to 47%) during days 60 to 149, waning to 7% (-8 to 20%) after 150 days. A monovalent booster increased VE to 54% (40% to 65%) at ages 12 to 15 and 46% (30% to 58%) at ages 16 to 17. At ages 5 to 11, 2-dose VE was 49% (33% to 61%) initially and 41% (29% to 51%) after 150 days. During Delta, VE against hospitalizations at ages 12 to 17 was high (>97%), and at ages 16 to 17 remained 98% (73% to 100%) beyond 150 days; during Omicron, hospitalizations were too infrequent to precisely estimate VE. CONCLUSIONS: BNT162b2 protected children and adolescents against mild to moderate and severe COVID-19. VE was lower during Omicron predominance including BA.4/BA.5, waned after dose 2 but increased after a monovalent booster. Children and adolescents should receive all recommended COVID-19 vaccinations.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Adolescent , Child , Child, Preschool , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Vaccination
5.
JAMA Netw Open ; 6(4): e237396, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2295073

ABSTRACT

Importance: Associations between prenatal SARS-CoV-2 exposure and neurodevelopmental outcomes have substantial public health relevance. A previous study found no association between prenatal SARS-CoV-2 infection and parent-reported infant neurodevelopmental outcomes, but standardized observational assessments are needed to confirm this finding. Objective: To assess whether mild or asymptomatic maternal SARS-CoV-2 infection vs no infection during pregnancy is associated with infant neurodevelopmental differences at ages 5 to 11 months. Design, Setting, and Participants: This cohort study included infants of mothers from a single-site prospective cross-sectional study (COVID-19 Mother Baby Outcomes [COMBO] Initiative) of mother-infant dyads and a multisite prospective cohort study (Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2 in Pregnancy and Infancy [ESPI]) of pregnant individuals. A subset of ESPI participants was subsequently enrolled in the ESPI COMBO substudy. Participants in the ongoing COMBO study were enrolled beginning on May 26, 2020; participants in the ESPI study were enrolled from May 7 to November 3, 2021; and participants in the ESPI COMBO substudy were enrolled from August 2020 to March 2021. For the current analysis, infant neurodevelopment was assessed between March 2021 and June 2022. A total of 407 infants born to 403 mothers were enrolled (204 from Columbia University Irving Medical Center in New York, New York; 167 from the University of Utah in Salt Lake City; and 36 from the University of Alabama in Birmingham). Mothers of unexposed infants were approached for participation based on similar infant gestational age at birth, date of birth, sex, and mode of delivery to exposed infants. Exposures: Maternal symptomatic or asymptomatic SARS-CoV-2 infection. Main Outcomes and Measures: Infant neurodevelopment was assessed using the Developmental Assessment of Young Children, second edition (DAYC-2), adapted for telehealth assessment. The primary outcome was age-adjusted standard scores on 5 DAYC-2 subdomains: cognitive, gross motor, fine motor, expressive language, and receptive language. Results: Among 403 mothers, the mean (SD) maternal age at delivery was 32.1 (5.4) years; most mothers were of White race (240 [59.6%]) and non-Hispanic ethnicity (253 [62.8%]). Among 407 infants, 367 (90.2%) were born full term and 212 (52.1%) were male. Overall, 258 infants (63.4%) had no documented prenatal exposure to SARS-CoV-2 infection, 112 (27.5%) had confirmed prenatal exposure, and 37 (9.1%) had exposure before pregnancy or at an indeterminate time. In adjusted models, maternal SARS-CoV-2 infection during pregnancy was not associated with differences in cognitive (ß = 0.31; 95% CI, -2.97 to 3.58), gross motor (ß = 0.82; 95% CI, -1.34 to 2.99), fine motor (ß = 0.36; 95% CI, -0.74 to 1.47), expressive language (ß = -1.00; 95% CI, -4.02 to 2.02), or receptive language (ß = 0.45; 95% CI, -2.15 to 3.04) DAYC-2 subdomain scores. Trimester of exposure and maternal symptom status were not associated with DAYC-2 subdomain scores. Conclusions and Relevance: In this study, results of a novel telehealth-adapted observational neurodevelopmental assessment extended a previous finding of no association between prenatal exposure to maternal SARS-CoV-2 infection and infant neurodevelopment. Given the widespread and continued high prevalence of COVID-19, these data offer information that may be helpful for pregnant individuals who experience asymptomatic or mild SARS-CoV-2 infections.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Prenatal Exposure Delayed Effects , Infant, Newborn , Child , Female , Pregnancy , Humans , Infant , Male , Child, Preschool , Adult , Cohort Studies , Prospective Studies , COVID-19/epidemiology , Prenatal Exposure Delayed Effects/epidemiology , Cross-Sectional Studies , Pregnancy Complications, Infectious/epidemiology , SARS-CoV-2
6.
Clin Infect Dis ; 75(6): 987-995, 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2304216

ABSTRACT

BACKGROUND: Acute respiratory infections (ARI) are the most common infectious diseases globally. Community surveillance may provide a more comprehensive picture of disease burden than medically attended illness alone. METHODS: In this longitudinal study conducted from 2012 to 2017 in the Washington Heights/Inwood area of New York City, we enrolled 405 households with 1915 individuals. Households were sent research text messages twice weekly inquiring about ARI symptoms. Research staff confirmed symptoms by follow-up call. If ≥2 criteria for ARI were met (fever/feverish, cough, congestion, pharyngitis, myalgias), staff obtained a mid-turbinate nasal swab in participants' homes. Swabs were tested using the FilmArray reverse transcription polymerase chain reaction (RT-PCR) respiratory panel. RESULTS: Among participants, 43.9% were children, and 12.8% had a chronic respiratory condition. During the 5 years, 114 724 text messages were sent; the average response rate was 78.8% ± 6.8%. Swabs were collected for 91.4% (2756/3016) of confirmed ARI; 58.7% had a pathogen detected. Rhino/enteroviruses (51.9%), human coronaviruses (13.9%), and influenza (13.2%) were most commonly detected. The overall incidence was 0.62 ARI/person-year, highest (1.73) in <2 year-olds and lowest (0.46) in 18-49 year-olds. Approximately one-fourth of those with ARI sought healthcare; percents differed by pathogen, demographic factors, and presence of a chronic respiratory condition. CONCLUSIONS: Text messaging is a novel method for community-based surveillance that could be used both seasonally as well as during outbreaks, epidemics and pandemics. The importance of community surveillance to accurately estimate disease burden is underscored by the findings of low rates of care-seeking that varied by demographic factors and pathogens.


Subject(s)
Influenza, Human , Pharyngitis , Respiratory Tract Infections , Text Messaging , Child , Fever/epidemiology , Humans , Infant , Influenza, Human/epidemiology , Longitudinal Studies , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology
7.
Pediatr Clin North Am ; 70(2): 227-241, 2023 04.
Article in English | MEDLINE | ID: covidwho-2282539

ABSTRACT

Influenza vaccination rates in children are suboptimal. One underlying reason is influenza vaccine hesitancy. Tools such as the Parent Attitudes about Childhood Vaccines survey and the Vaccine Hesitancy Scale can be used to measure influenza vaccine hesitancy. The adapted Increasing Vaccination Model from Brewer and colleagues can help identify factors that influence influenza vaccine hesitancy, motivation, and uptake. Several strategies can be used to address influenza vaccine hesitancy, which we discuss further in this review.


Subject(s)
Influenza Vaccines , Influenza, Human , Child , Humans , Influenza, Human/prevention & control , Vaccination Hesitancy , Health Knowledge, Attitudes, Practice , Parents , Patient Acceptance of Health Care , Vaccination
8.
J Am Board Fam Med ; 35(6): 1174-1178, 2022 12 23.
Article in English | MEDLINE | ID: covidwho-2198395

ABSTRACT

BACKGROUND: Millions of children have tested positive for SARS-CoV-2, and over 1000 children have died in the US. However, vaccination rates for children 5 to 11 years old are low. METHODS: Starting in August 2020, we conducted a prospective SARS-CoV-2 household surveillance study in Spanish and English-speaking households in New York City and Utah. From October 21 to 25, 2021, we asked caregivers about their likelihood of getting COVID-19 vaccine for their child, and reasons that they might or might not vaccinate that child. We compared intent to vaccinate by site, demographic characteristics, SARS-CoV-2 infection detected by study surveillance, and parents' COVID-19 vaccination status using Chi-square tests and a multivariable logistic regression model, accounting for within-household clustering. RESULTS: Among parents or caregivers of 309 children (0 to 11 years) in 172 households, 87% were very or somewhat likely to intend to vaccinate their child. The most prevalent reasons for intending to vaccinate were to protect family and friends and the community; individual prevention was mentioned less often. The most prevalent reasons for not intending to vaccinate were side effect concerns and wanting to wait and see.In multivariable analysis, parents had much lower odds of intending to vaccinate if someone in the household had tested SARS-CoV-2-positive during the study (adjusted odds ratio = 0.09; 95% confidence interval, 0.03-0.3). CONCLUSION: This study highlighted several themes for clinicians and public health officials to consider including the importance and safety of vaccination for this age-group even if infected previously, and the benefits of vaccination to protect family, friends, and community.


Subject(s)
COVID-19 , Child , Humans , Child, Preschool , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Intention , Prospective Studies , Parents , Vaccination
9.
mSphere ; : e0040022, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2116438

ABSTRACT

The reliability of sequence-based inference of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is not clear. Sequence data from infections among household members can define the expected genomic diversity of a virus along a defined transmission chain. SARS-CoV-2 cases were identified prospectively among 2,369 participants in 706 households. Specimens with a reverse transcription-PCR cycle threshold of ≤30 underwent whole-genome sequencing. Intrahost single-nucleotide variants (iSNV) were identified at a ≥5% frequency. Phylogenetic trees were used to evaluate the relationship of household and community sequences. There were 178 SARS-CoV-2 cases in 706 households. Among 147 specimens sequenced, 106 yielded a whole-genome consensus with coverage suitable for identifying iSNV. Twenty-six households had sequences from multiple cases within 14 days. Consensus sequences were indistinguishable among cases in 15 households, while 11 had ≥1 consensus sequence that differed by 1 to 2 mutations. Sequences from households and the community were often interspersed on phylogenetic trees. Identification of iSNV improved inference in 2 of 15 households with indistinguishable consensus sequences and in 6 of 11 with distinct ones. In multiple-infection households, whole-genome consensus sequences differed by 0 to 1 mutations. Identification of shared iSNV occasionally resolved linkage, but the low genomic diversity of SARS-CoV-2 limits the utility of "sequence-only" transmission inference. IMPORTANCE We performed whole-genome sequencing of SARS-CoV-2 from prospectively identified cases in three longitudinal household cohorts. In a majority of multi-infection households, SARS-CoV-2 consensus sequences were indistinguishable, and they differed by 1 to 2 mutations in the rest. Importantly, even with modest genomic surveillance of the community (3 to 5% of cases sequenced), it was not uncommon to find community sequences interspersed with household sequences on phylogenetic trees. Identification of shared minority variants only occasionally resolved these ambiguities in transmission linkage. Overall, the low genomic diversity of SARS-CoV-2 limits the utility of "sequence-only" transmission inference. Our work highlights the need to carefully consider both epidemiologic linkage and sequence data to define transmission chains in households, hospitals, and other transmission settings.

10.
Obstet Gynecol ; 140(6): 989-992, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2118020

ABSTRACT

For public health research such as vaccine uptake or effectiveness assessments, self-reported coronavirus disease 2019 (COVID-19) vaccination status may be a more efficient measure than verifying vaccination status from medical records if agreement between sources is high. We assessed agreement between self-reported and medical record-documented COVID-19 vaccination status among pregnant individuals followed in a cohort during August 2020-October 2021. At end of pregnancy, participants completed questionnaires about COVID-19 vaccine receipt during pregnancy; staff verified vaccination status using medical records. Agreement was assessed between self-reported and medical record vaccination status using Cohen's kappa. There was high agreement between self-reported and medical record vaccination status (Kappa coefficient=0.94, 95% CI 0.91-0.98), suggesting that self-report may be acceptable for ascertaining COVID-19 vaccination status during pregnancy.


Subject(s)
COVID-19 , Pregnancy , Female , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Self Report , COVID-19 Vaccines , Vaccination , Medical Records , Documentation
11.
JAMA Netw Open ; 5(9): e2233273, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-2047371

ABSTRACT

Importance: Pregnant people are at high risk for severe COVID-19 but were excluded from mRNA vaccine trials; data on COVID-19 vaccine effectiveness (VE) are needed. Objective: To evaluate the estimated effectiveness of mRNA vaccination against medically attended COVID-19 among pregnant people during Delta and Omicron predominance. Design, Setting, and Participants: This test-negative, case-control study was conducted from June 2021 to June 2022 in a network of 306 hospitals and 164 emergency department and urgent care (ED/UC) facilities across 10 US states, including 4517 ED/UC encounters and 975 hospitalizations among pregnant people with COVID-19-like illness (CLI) who underwent SARS-CoV-2 molecular testing. Exposures: Two doses (14-149 and ≥150 days prior) and 3 doses (7-119 and ≥120 days prior) of COVID-19 mRNA vaccine (≥1 dose received during pregnancy) vs unvaccinated. Main Outcomes and Measures: Estimated VE against laboratory-confirmed COVID-19-associated ED/UC encounter or hospitalization, based on the adjusted odds ratio (aOR) for prior vaccination; VE was calculated as (1 - aOR) × 100%. Results: Among 4517 eligible CLI-associated ED/UC encounters and 975 hospitalizations, 885 (19.6%) and 334 (34.3%) were SARS-CoV-2 positive, respectively; the median (IQR) patient age was 28 (24-32) years and 31 (26-35) years, 537 (12.0%) and 118 (12.0%) were non-Hispanic Black and 1189 (26.0%) and 240 (25.0%) were Hispanic. During Delta predominance, the estimated VE against COVID-19-associated ED/UC encounters was 84% (95% CI, 69% to 92%) for 2 doses within 14 to 149 days, 75% (95% CI, 5% to 93%) for 2 doses 150 or more days prior, and 81% (95% CI, 30% to 95%) for 3 doses 7 to 119 days prior; estimated VE against COVID-19-associated hospitalization was 99% (95% CI, 96% to 100%), 96% (95% CI, 86% to 99%), and 97% (95% CI, 79% to 100%), respectively. During Omicron predominance, for ED/UC encounters, the estimated VE of 2 doses within 14 to 149 days, 2 doses 150 or more days, 3 doses within 7 to 119 days, and 3 doses 120 or more days prior was 3% (95% CI, -49% to 37%), 42% (95% CI, -16% to 72%), 79% (95% CI, 59% to 89%), and -124% (95% CI, -414% to 2%), respectively; for hospitalization, estimated VE was 86% (95% CI, 41% to 97%), 64% (95% CI, -102% to 93%), 86% (95% CI, 28% to 97%), and -53% (95% CI, -1254% to 83%), respectively. Conclusions and Relevance: In this study, maternal mRNA COVID-19 vaccination, including booster dose, was associated with protection against medically attended COVID-19. VE estimates were higher against COVID-19-associated hospitalization than ED/UC visits and lower against the Omicron variant than the Delta variant. Protection waned over time, particularly during Omicron predominance.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Pregnancy Complications, Infectious , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Female , Humans , Influenza, Human/prevention & control , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/prevention & control , RNA, Messenger, Stored , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
12.
Open Forum Infect Dis ; 9(8): ofac390, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2001405

ABSTRACT

Background: Households are common places for spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We investigated factors associated with household transmission and acquisition of SARS-CoV-2. Methods: Households with children age <18 years were enrolled into prospective, longitudinal cohorts and followed from August 2020 to August 2021 in Utah, September 2020 to August 2021 in New York City, and November 2020 to October 2021 in Maryland. Participants self-collected nasal swabs weekly and with onset of acute illness. Swabs were tested for SARS-CoV-2 using reverse transcription polymerase chain reaction. We assessed factors associated with SARS-CoV-2 acquisition using a multilevel logistic regression adjusted for household size and clustering and SARS-CoV-2 transmission using a logistic regression adjusted for household size. Results: Among 2053 people (513 households) enrolled, 180 people (8.8%; in 76 households) tested positive for SARS-CoV-2. Compared with children age <12 years, the odds of acquiring infection were lower for adults age ≥18 years (adjusted odds ratio [aOR], 0.34; 95% CI, 0.14-0.87); however, this may reflect vaccination status, which protected against SARS-CoV-2 acquisition (aOR, 0.17; 95% CI, 0.03-0.91). The odds of onward transmission were similar between symptomatic and asymptomatic primary cases (aOR, 1.00; 95% CI, 0.35-2.93) and did not differ by age (12-17 years vs <12 years: aOR, 1.08; 95% CI, 0.20-5.62; ≥18 years vs <12 years: aOR, 1.70; 95% CI, 0.52-5.83). Conclusions: Adults had lower odds of acquiring SARS-CoV-2 compared with children, but this association might be influenced by coronavirus disease 2019 (COVID-19) vaccination, which was primarily available for adults and protective against infection. In contrast, all ages, regardless of symptoms and COVID-19 vaccination, had similar odds of transmitting SARS-CoV-2. Our findings underscore the importance of SARS-CoV-2 mitigation measures for persons of all ages.

13.
Microbiol Spectr ; 10(3): e0103322, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1879118

ABSTRACT

Respiratory specimen collection materials shortages hampers severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing. We compared specimen alternatives and evaluated SARS-CoV-2 RNA stability under simulated shipping conditions. We compared concordance of RT-PCR detection of SARS-CoV-2 from flocked midturbinate swabs (MTS) in viral transport media (VTM), foam MTS without VTM, and saliva. Specimens were collected between August 2020 and April 2021 from three prospective cohorts. We compared RT-PCR cycle quantification (Cq) for Spike (S), Nucleocapsid (N), and the Open Reading Frame 1ab (ORF) genes for flocked MTS and saliva specimens tested before and after exposure to a range of storage temperatures (4-30°C) and times (2, 3, and 7 days). Of 1,900 illnesses with ≥2 specimen types tested, 335 (18%) had SARS-CoV-2 detected in ≥1 specimen; 304 (91%) were concordant across specimen types. Among illnesses with SARS-CoV-2 detection, 97% (95% confidence interval [CI]: 94-98%) were positive on flocked MTS, 99% (95% CI: 97-100%) on saliva, and 89% (95% CI: 84-93%) on foam MTS. SARS-CoV-2 RNA was detected in flocked MTS and saliva stored up to 30°C for 7 days. All specimen types provided highly concordant SARS-CoV-2 results. These findings support a range of viable options for specimen types, collection, and transport methods that may facilitate SARS-CoV-2 testing during supply and personnel shortages. IMPORTANCE Findings from this analysis indicate that (1) self-collection of flocked and foam MTS and saliva samples is feasible in both adults and children, (2) foam MTS with VTM and saliva are both viable and reasonable alternatives to traditional flocked MTS in VTM for SARS-CoV-2 detection, and (3) these sample types may be stored and transported at ambient temperatures for up to 7 days without compromising sample quality. These findings support methods of sample collection for SARS-CoV-2 detection that may facilitate widespread community testing in the setting of supply and personnel shortages during the current pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , COVID-19/diagnosis , COVID-19 Testing , Child , Humans , Prospective Studies , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Saliva , Specimen Handling/methods
14.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1771891

ABSTRACT

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
15.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Article in English | MEDLINE | ID: covidwho-1727017

ABSTRACT

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United States
16.
Clin Infect Dis ; 74(12): 2218-2226, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1707455

ABSTRACT

BACKGROUND: Data about the risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among pregnant individuals are needed to inform infection-prevention guidance and counseling for this population. METHODS: We prospectively followed a cohort of pregnant individuals during August 2020-March 2021 at 3 US sites. The 3 primary outcomes were incidence rates of any SARS-CoV-2 infection, symptomatic infection, and asymptomatic infection, during pregnancy during periods of SARS-CoV-2 circulation. Participants self-collected weekly midturbinate nasal swabs for SARS-CoV-2 reverse transcription-polymerase chain reaction testing, completed weekly illness symptom questionnaires, and submitted additional swabs with coronavirus disease 2019 (COVID-19)-like symptoms. An overall SARS-CoV-2 infection incidence rate weighted by population counts of women of reproductive age in each state was calculated. RESULTS: Among 1098 pregnant individuals followed for a mean of 10 weeks, 9% (99/1098) had SARS-CoV-2 infections during the study. Population-weighted incidence rates of SARS-CoV-2 infection were 10.0 per 1000 (95% confidence interval, 5.7-14.3) person-weeks for any infection, 5.7 per 1000 (1.7-9.7) for symptomatic infections, and 3.5 per 1000 (0-7.1) for asymptomatic infections. Among 96 participants with SARS-CoV-2 infections and symptom data, the most common symptoms were nasal congestion (72%), cough (64%), headache (59%), and change in taste or smell (54%); 28% had measured or subjective fever. Median symptom duration was 10 (interquartile range, 6-16) days. CONCLUSIONS: Pregnant individuals in this study had a 1% risk of SARS-CoV-2 infection per week, underscoring the importance of COVID-19 vaccination and other prevention measures during pregnancy while SARS-CoV-2 is circulating in the community.


Subject(s)
COVID-19 , SARS-CoV-2 , Asymptomatic Infections/epidemiology , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Vaccines , Female , Humans , Incidence , Pregnancy , Risk Factors , United States/epidemiology
18.
JAMA Pediatr ; 176(1): 59-67, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1460123

ABSTRACT

Importance: Data about the risk of SARS-CoV-2 infection among children compared with adults are needed to inform COVID-19 risk communication and prevention strategies, including COVID-19 vaccination policies for children. Objective: To compare incidence rates and clinical characteristics of SARS-CoV-2 infection among adults and children and estimated household infection risks within a prospective household cohort. Design, Setting, and Participants: Households with at least 1 child aged 0 to 17 years in selected counties in Utah and New York City, New York, were eligible for enrollment. From September 2020 through April 2021, participants self-collected midturbinate nasal swabs for reverse transcription-polymerase chain reaction testing for SARS-CoV-2 and responded to symptom questionnaires each week. Participants also self-collected additional respiratory specimens with onset of COVID-19-like illness. For children unable to self-collect respiratory specimens, an adult caregiver collected the specimens. Main Outcomes and Measures: The primary outcome was incident cases of any SARS-CoV-2 infection, including asymptomatic and symptomatic infections. Additional measures were the asymptomatic fraction of infection calculated by dividing incidence rates of asymptomatic infection by rates of any infection, clinical characteristics of infection, and household infection risks. Primary outcomes were compared by participant age group. Results: A total of 1236 participants in 310 households participated in surveillance, including 176 participants (14%) who were aged 0 to 4 years, 313 (25%) aged 5 to 11 years, 163 (13%) aged 12 to 17 years, and 584 (47%) 18 years or older. Overall incidence rates of SARS-CoV-2 infection were 3.8 (95% CI, 2.4-5.9) and 7.7 (95% CI, 4.1-14.5) per 1000 person-weeks among the Utah and New York City cohorts, respectively. Site-adjusted incidence rates per 1000 person-weeks were similar by age group: 6.3 (95% CI, 3.6-11.0) for children 0 to 4 years, 4.4 (95% CI, 2.5-7.5) for children 5 to 11 years, 6.0 (95% CI, 3.0-11.7) for children 12 to 17 years, and 5.1 (95% CI, 3.3-7.8) for adults (≥18 years). The asymptomatic fractions of infection by age group were 52%, 50%, 45%, and 12% among individuals aged 0 to 4 years, 5 to 11 years, 12 to 17 years, and 18 years or older, respectively. Among 40 households with 1 or more SARS-CoV-2 infections, the mean risk of SARS-CoV-2 infection among all enrolled household members was 52% (range, 11%-100%), with higher risks in New York City compared with Utah (80% [95% CI, 64%-91%] vs 44% [95% CI, 36%-53%]; P < .001). Conclusions and Relevance: In this study, children had similar incidence rates of SARS-CoV-2 infection compared with adults, but a larger proportion of infections among children were asymptomatic.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19 Testing/statistics & numerical data , COVID-19/transmission , Adolescent , Adult , COVID-19/epidemiology , Child , Child, Preschool , Contact Tracing/statistics & numerical data , Disease Susceptibility , Family Characteristics , Humans , Incidence , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Prospective Studies , Utah/epidemiology , Young Adult
19.
Am J Perinatol ; 39(1): 75-83, 2022 01.
Article in English | MEDLINE | ID: covidwho-1447396

ABSTRACT

OBJECTIVE: The aim of the study was to evaluate pregnant women's attitudes toward COVID-19 illness and vaccination and identify factors associated with vaccine acceptability. STUDY DESIGN: This was a cross-sectional survey among pregnant women enrolled in a prospective COVID-19 cohort study in Salt Lake City, UT, Birmingham, AL, and New York, NY, from August 9 to December 10, 2020. Women were eligible if they were 18 to 50 years old and <28 weeks of gestation. Upon enrollment, women completed surveys regarding concerns about COVID-19 illness and likelihood of getting COVID-19 vaccine if one were available during pregnancy. Vaccine acceptability was defined as a response of "very likely" or "somewhat likely" on a 4-point Likert scale. Factors associated with vaccine acceptability were assessed with multivariable logistic regression. RESULTS: Of 939 pregnant women eligible for the main cohort study, 915 (97%) consented to participate. Among these 915 women, 39% self-identified as White, 23% Black, 33% Hispanic, and 4% Other. Sixty-two percent received an influenza vaccine last season. Seventy-two percent worried about getting sick with COVID-19. If they were to get sick, 92% worried about harm to their pregnancy and 80% about harm to themselves. Only 41% reported they would get a vaccine. Of women who were unlikely to get vaccinated, the most frequently cited concern was vaccine safety for their pregnancy (82%). Non-Hispanic Black and Hispanic women had lower odds of accepting a vaccine compared with non-Hispanic White women (adjusted odds ratios [aOR] 0.4, 95% CI 0.2-0.6 for both). Receipt of influenza vaccine during the previous season was associated with higher odds of vaccine acceptability (aOR 2.1, 95% CI 1.5-3.0). CONCLUSION: Although most pregnant women worried about COVID-19 illness, <50% were willing to get vaccinated during pregnancy. Racial and ethnic disparities in plans to accept COVID-19 vaccine highlight the need to prioritize strategies to address perceived barriers among groups at high risk for COVID-19. KEY POINTS: · Less than half of pregnant patients stated they would get a COVID-19 vaccine.. · Protecting their baby was the most common reason for acceptance and refusal of the COVID-19 vaccine.. · Patients of minority race/ethnicity and those without prior influenza vaccination were less likely to accept the COVID-19 vaccine..


Subject(s)
COVID-19/prevention & control , Patient Acceptance of Health Care/psychology , Pregnant Women/psychology , Vaccination Hesitancy/statistics & numerical data , Vaccination/psychology , Adolescent , Adult , Black or African American/statistics & numerical data , COVID-19 Vaccines/adverse effects , Cross-Sectional Studies , Female , Hispanic or Latino/statistics & numerical data , Humans , Influenza Vaccines , Influenza, Human/prevention & control , Middle Aged , Patient Acceptance of Health Care/ethnology , Patient Acceptance of Health Care/statistics & numerical data , Pregnancy , Prospective Studies , SARS-CoV-2 , Surveys and Questionnaires , Vaccination/statistics & numerical data , Vaccination Hesitancy/ethnology , White People/statistics & numerical data , Young Adult
20.
Semin Perinatol ; 44(7): 151286, 2020 11.
Article in English | MEDLINE | ID: covidwho-1029142

ABSTRACT

As the COVID-19 pandemic continues to spread worldwide, it is crucial that we determine populations that are at-risk and develop appropriate clinical care policies to protect them. While several respiratory illnesses are known to seriously impact pregnant women and newborns, preliminary data on the novel SARS-CoV-2 Coronavirus suggest that these groups are no more at-risk than the general population. Here, we review the available literature on newborns born to infected mothers and show that newborns of mothers with positive/suspected SARS-CoV-2 infection rarely acquire the disease or show adverse clinical outcomes. With this evidence in mind, it appears that strict postnatal care policies, including separating mothers and newborns, discouraging breastfeeding, and performing early bathing, may be more likely to adversely impact newborns than they are to reduce the low risk of maternal transmission of SARS-CoV-2 or the even lower risk of severe COVID-19 disease in otherwise healthy newborns.


Subject(s)
Baths , Breast Feeding , COVID-19/epidemiology , Infectious Disease Transmission, Vertical/statistics & numerical data , Patient Isolation , Pregnancy Complications, Infectious , Female , Humans , Infant, Newborn , Organizational Policy , Postnatal Care , Pregnancy , Rooming-in Care , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL